What is the equation of the line that passes through #(-3,4)# and #(-1, -2)#?

1 Answer
Mar 3, 2018

#y + 3x + 5 = 0#

Explanation:

#color(red)(x_1->-3)#
#color(red)(x_2->-1)#
#color(red)(y_1->4)#
#color(red)(y_2->-2)#

The equation of a line is equal to:-

#color(green)[y-y_1=(y_1 - y_2)/(x_1-x_2) xx (x-x_1)]#

Put the above values in this equation.

You get

#color(brown)[y-4 = (4-(-2))/(-3-(-1)) xx [x-(-3)]]#

#color(brown)[=> y-4 = (4+2)/(-3+1) xx (x+3)]#

#color(purple)[=> y-4 = 6/-2 xx (x+3)]#

#color(purple)[=> y-4 = -3 xx (x+3)]#

#color(blue)[=> y-4 = -3x -9]#

#color(blue)[=> y + 3x -4 + 9 = 0]#

#color(orange)[=> y + 3x + 5 = 0]#