How do you use the binomial formula to expand #(x+1)^3#? Precalculus The Binomial Theorem The Binomial Theorem 1 Answer Sahar Mulla ❤ Mar 2, 2018 # x^3 + 3x^2 +3x + 1# Explanation: Binomial formula for #(a+b)^3# #=> ^3C_0a^3b^0 + ^3C_1a^2b^1 +^3C_2a^1b^2 + ^3C_3a^0b^3# Here, #a = x# and #b = 1#. #=> ^3C_0x^3 + ^3C_1x^2xx1^1 +^3C_2x^1xx1^2 + ^3C_3xx1^3# As #color(red)(->^3C_0=^3C_3=1) and color(magenta)(->^3C_1=^3C_2 = 3# #=> x^3 + 3x^2 +3x + 1# Answer link Related questions What is the binomial theorem? How do I use the binomial theorem to expand #(d-4b)^3#? How do I use the the binomial theorem to expand #(t + w)^4#? How do I use the the binomial theorem to expand #(v - u)^6#? How do I use the binomial theorem to find the constant term? How do you find the coefficient of x^5 in the expansion of (2x+3)(x+1)^8? How do you find the coefficient of x^6 in the expansion of #(2x+3)^10#? How do you use the binomial series to expand #f(x)=1/(sqrt(1+x^2))#? How do you use the binomial series to expand #1 / (1+x)^4#? How do you use the binomial series to expand #f(x)=(1+x)^(1/3 )#? See all questions in The Binomial Theorem Impact of this question 117789 views around the world You can reuse this answer Creative Commons License