Here,
#color(blue)(sin3x+cos3x=0) ,where,color(red)(x in (0,pi)#
Using above #color(blue)((I)and (II)#
#color(blue)(3sinx-4sin^3x+4cos^3x-3cosx=0#
#=>4cos^3x-4sin^3x-3cosx+3sinx=0#
#=>4(cos^3x-sin^3x)-3(cosx-sinx)=0#
#=>4(cosx-sinx)(cos^2x+cosxsinx+sin^2x)-3(cosx-sinx)=0#
#=>(cosx-sinx)[4(cos^2x+cosxsinx+sin^2x)-3]=0#
#=>(cosx-sinx)[4(1+cosxsinx)-3]=0#
#=>(cosx-sinx)[4+4sinxcosx-3]=0#
#=>(cosx-sinx)(1+2*2sinxcosx)=0#
#=>(cosx-sinx)(1+2color(violet)(sin2x))=0...tocolor(violet)(Apply(III)#
#=>cosx-sinx=0 or 1+2sin2x=0=>sin2x=-1/2#
Now, #x in (0,pi)=>I^(st)Quadrant or II^(nd)Quadrant#
#(i)cosx-sinx=0=>sinx=cosx=>tanx=1 > 0#
#i.e.I^(st)Quadrant=>color(red)(x=pi/4#
Also, #x in(0,pi) #
#=>2x in(0,2pi)=>I^(st),II^(nd),III ^(rd),IV^(th)Quadrant#
#(ii)sin2x=-1/2 < 0=>III^(rd) or IV^(th) Quadrant#
#:.2x=pi+pi/6=(7pi)/6 or 2x=2pi-pi/6=(11pi)/6#
#i.e. color(red)( x=(7pi)/12 or x=(11pi)/12#
Hence, #x=pi/4,(7pi)/12,(11pi)/12#