How do you show that sin(x+60) + sin(x+120) =(√3)cosx ?

2 Answers
Feb 28, 2018

See the answer below...

Explanation:

sin(x+60)+sin(x+120)sin(x+60)+sin(x+120)

=2 cdot sin{((x+60)+(x+120))/2} cdot cos{((x+60)-(x+120))/2}=2sin{(x+60)+(x+120)2}cos{(x+60)(x+120)2}

=2 cdot sin{(2x+180)/2} cdot cos{(-60)/2}=2sin{2x+1802}cos{602}

=2 cdot sin{90+x} cdot cos{30}=2sin{90+x}cos{30}

=2 cdot sin{90-(-x)} cdot cos30=2sin{90(x)}cos30

=2 cdot cosx cdot sqrt3/2=2cosx32

=sqrt3 cdot cosx=3cosx

Feb 28, 2018

see below

Explanation:

We have,sin(x+60) +sin(x+120)sin(x+60)+sin(x+120) on L.H.S
According to formula, sin(a+b)=sinacosb+cosasinbsin(a+b)=sinacosb+cosasinb
Applying it,we get,
sinxcos(60) +cosxsin(60) +sinxcos(120) + cosxsin(120)sinxcos(60)+cosxsin(60)+sinxcos(120)+cosxsin(120)
or, sinx//2 +cosx xx (sqrt3)//2 -sinx//2 +cosx xx(sqrt3)//2sinx/2+cosx×(3)/2sinx/2+cosx×(3)/2
{color(blue)(as cos "120 " is -1//2 and sin "120 " is (sqrt3)//2ascos120 is1/2andsin120 is(3)/2}

Thus,the expression comes out to be,2xx (sqrt3)//2 xxcosx2×(3)/2×cosx which is color(red)(sqrt3 cosx)3cosx, the R.H.S