How do you show that sin(x+60) + sin(x+120) =(√3)cosx ?
2 Answers
See the answer below...
Explanation:
sin(x+60)+sin(x+120)sin(x+60)+sin(x+120)
=2 cdot sin{((x+60)+(x+120))/2} cdot cos{((x+60)-(x+120))/2}=2⋅sin{(x+60)+(x+120)2}⋅cos{(x+60)−(x+120)2}
=2 cdot sin{(2x+180)/2} cdot cos{(-60)/2}=2⋅sin{2x+1802}⋅cos{−602}
=2 cdot sin{90+x} cdot cos{30}=2⋅sin{90+x}⋅cos{30}
=2 cdot sin{90-(-x)} cdot cos30=2⋅sin{90−(−x)}⋅cos30
=2 cdot cosx cdot sqrt3/2=2⋅cosx⋅√32
=sqrt3 cdot cosx=√3⋅cosx
see below
Explanation:
We have,
According to formula,
Applying it,we get,
or,
{
Thus,the expression comes out to be,