lim_(x->0)(3^(2+x)-9)/x Can you please Evaluate this limit ?

2 Answers
Feb 27, 2018

ln3^9

Explanation:

lim_( x-> 0)(3^(2+x)-9)/x=lim_(x->0)(3^2*3^x-3^2)/x=3^2lim_(x->0)(3^x-1)/x=9ln3=ln3^9
Hint:
*lim_(h->0)(a^h-1)/h=lna,where, ainR^+ -{1}

Feb 28, 2018

9ln3

Explanation:

Since we get 0/0 after plugging in 0 in the place of x, we use the L'Hospital's Rule.

The rule states that:

lim_(x->c)f(x)/g(x)=(f'(c))/(g'(c)) If we get an indeterminate form for f(c)/g(c)

=>lim_(c->0)(3^(2+x)-9)/x=(d/dx(3^(2+x))-d/dx(9))/(d/dx(x))

Exponent rule:

d/dx(n^x)=ln(n)*n^x*d/dx(x) when n is a constant.

"A derivative of a constant is always zero."

Power rule:

d/dx(x^n)=nx^(n-1) when n is a constant.

We now have:

=>(ln3*3^(2+x)*d/dx(2+x)-0)/1

=>ln3*3^(2+x)*1

=>ln3*3^(2+x)

=>3^(2+x)ln3

Replace x with 0

=>3^(2+0)ln3

=>9ln3