How do you solve this system of equations: -\frac { 1} { 2} x + \frac { 1} { 5} y = 9 and 7x - \frac { 1} { 3} y = - \frac { 2} { 3}12x+15y=9and7x13y=23?

1 Answer
Feb 26, 2018

x= 86/37 and y = 1880/37x=8637andy=188037

Explanation:

-\frac { 1} { 2} x + \frac { 1} { 5} y = 9 12x+15y=9----------(1)

and

7x - \frac { 1} { 3} y = - \frac { 2} { 3}7x13y=23------------(2)

Multiplying equation (1) by 10 and equation (2) by 3 to eliminate the fractional part:

- 5 x + 2 y = 905x+2y=90--------------(1') and

21x - 1 y = - 221x1y=2 -----------(2')

Eliminate any one variable (say yy):

(1') + (2') x 2 =>

- 5 x + (2xx 21x) + 2 y + (2xx -1y) = 90+ (2xx -2)5x+(2×21x)+2y+(2×1y)=90+(2×2)

=> -5x +42x +2y -2y = 90 - 45x+42x+2y2y=904

=> 37x = 8637x=86

=> x = 86/37 = 2 12/37x=8637=21237

Substitute this value of xx in (1') or (2') to get the value of yy

(2')=> 21 xx(86/37) - 1 y = - 221×(8637)1y=2

=> 1806/ 37 -y = -2 180637y=2

=> - y = -2 - 1806/37y=2180637

-y = (-74-1806)/37y=74180637

y = 1880/37y=188037

Cross check the validity of x and yxandy by substituting in left hand side (LHS)of any of (1) and (2):

LHS of (1)=>

-\frac { 1} { 2} x + \frac { 1} { 5} y = -1/2 (86/37) + 1/5 xx (1880/37)12x+15y=12(8637)+15×(188037)

= -43/37 + 376/ 37 = 333/37 =4337+37637=33337

= 9 =9 = RHS (right hand side ) of equation (1)

therefore x= 86/37 and y = 1880/37 are the correct values.