(sin 3x + sin x) / (cos 3x + cos x) = sqrt 3, sin x = ?

2 Answers

sin x=1/2 [when 0<=x<=pi/2]

Explanation:

(sin 3x + sin x) / (cos 3x + cos x) = sqrt 3

We'll apply 2 identities here, color(red)(sin3x = 3sinx-4sin^3x) and color(red)(cos3x=4cos^3x-3cosx)

or, (color(red)(3sinx-4sin^3x)+sinx)/(color(red)(4cos^3x-3cosx)+cosx)=sqrt3

Combining sinx terms,

or, (4sinx-4sin^3x)/(4cos^3x-2cosx)= sqrt3

or, [4sinx(1-sin^2x)]/[2cosx(2cos^2x-1)]=sqrt3

Again, 2 more identities, color(magenta)(cos^2x = 1-sin^2x and color(magenta)(cos2x=2cos^2x-1

or, (2sinxcancel(color(magenta)(cos^2x))^(cosx))/(cancelcosxcolor(magenta)(cos2x))= sqrt3

or, (2sinxcosx)/(cos2x)=sqrt3

One more here, color(blue)(sin2x=2sinxcosx

or, color(blue)(sin2x)/(cos2x)= sqrt3

or, tan2x= sqrt3

or, tan2x= tan(pi/3)

or, 2x= pi/3

or, x= pi/6

so, sinx= sin(pi/6)= 1/2

Feb 25, 2018

sinx=1/2

Explanation:

We may use,

rarrsinA+sinB=2sin((A+B)/2)*cos((A+B)/2) and

rarrcosA+cosB=2cos((A+B)/2)*cos((A+B)/2)

Given that,

rarr(sin3x+sinx)/(cos3x+cos)=sqrt(3)

rarr(cancel(2)sin((3x+x)/2)*cancel(cos((3x-x)/2)))/(cancel(2)cos((3x+x)/2)*cancel(cos((3x-x)/2)))=sqrt(3)

rarrtan2x=tan60°

rarr2x=60°

rarrx=30°

Now, sinx=sin30°=1/2