(sin 3x + sin x) / (cos 3x + cos x) = sqrt 3
We'll apply 2 identities here, color(red)(sin3x = 3sinx-4sin^3x) and color(red)(cos3x=4cos^3x-3cosx)
or, (color(red)(3sinx-4sin^3x)+sinx)/(color(red)(4cos^3x-3cosx)+cosx)=sqrt3
Combining sinx terms,
or, (4sinx-4sin^3x)/(4cos^3x-2cosx)= sqrt3
or, [4sinx(1-sin^2x)]/[2cosx(2cos^2x-1)]=sqrt3
Again, 2 more identities, color(magenta)(cos^2x = 1-sin^2x and color(magenta)(cos2x=2cos^2x-1
or, (2sinxcancel(color(magenta)(cos^2x))^(cosx))/(cancelcosxcolor(magenta)(cos2x))= sqrt3
or, (2sinxcosx)/(cos2x)=sqrt3
One more here, color(blue)(sin2x=2sinxcosx
or, color(blue)(sin2x)/(cos2x)= sqrt3
or, tan2x= sqrt3
or, tan2x= tan(pi/3)
or, 2x= pi/3
or, x= pi/6
so, sinx= sin(pi/6)= 1/2