Show that cos²π/10+cos²4π/10+cos² 6π/10+cos²9π/10=2. I am a bit confused if I make Cos²4π/10=cos²(π-6π/10) & cos²9π/10=cos²(π-π/10), it will turn negative as cos(180°-theta)=-costheta in the second quadrant. How do I go about proving the question?

2 Answers
Feb 21, 2018

Please see below.

Explanation:

LHS=cos^2(pi/10)+cos^2((4pi)/10)+cos^2((6pi)/10)+cos^2((9pi)/10)

=cos^2(pi/10)+cos^2((4pi)/10)+cos^2(pi-(4pi)/10)+cos^2(pi-(pi)/10)

=cos^2(pi/10)+cos^2((4pi)/10)+cos^2(pi/10)+cos^2((4pi)/10)

=2*[cos^2(pi/10)+cos^2((4pi)/10)]

=2*[cos^2(pi/2-(4pi)/10)+cos^2((4pi)/10)]

=2*[sin^2((4pi)/10)+cos^2((4pi)/10)]

=2*1=2=RHS

Feb 21, 2018

We know that,
color(red)(costheta = sin (pi/2-theta) so also,
color(red)(cos^2theta = sin^2 (pi/2-theta)
color(magenta)(costheta = -sin((3pi)/2-theta) so also,
color(magenta)(cos^2theta = (-sin((3pi)/2-theta))^2 = sin^2((3pi)/2-theta)

getting back to the question,

color(red)(cos²π/10)+cos²(4π)/10+cos² (6π)/10+color(magenta)(cos²(9π)/10)=2

color(red)(sin²(pi/2-π/10))+cos²(4π)/10+cos² (6π)/10+color(magenta)((-sin((3pi)/2-(9π)/10))^2)=2

sin²((5pi)/10-π/10)+cos²(4π)/10+cos² (6π)/10+sin²((3pi)/2-(9π)/10)=2

[sin²(4π)/10+cos²(4π)/10]+[cos² (6π)/10+sin²((15pi)/10-(9π)/10)]=2

[sin²(4π)/10+cos²(4π)/10]+[cos² (6π)/10+sin²(6π)/10]=2

Applying, sin^2theta + cos^2theta = 1

1+1=2
2=2

Hence Proved.

P.S. you were going right, just note that even if its negative, the final answer turns out to be positive as the cos is squared according to the question. Any negative number squared is positive :)