How to find d/dx ?

d/dx {(1+x^2+x^4x2+x4)^2x-3 }

1 Answer
Feb 17, 2018

d/dxddx =(4x-6)(x^4+x^2+1)^(2x-4)+(4x^3+2x)(4x6)(x4+x2+1)2x4+(4x3+2x)

Explanation:

Applying the product rule;
Bring (2x-3) down, the power minus 1. Lastly, multiply by 2 because we have to differentiate 2x-3
Next we differentiate the value of (x^4+x^2+1)(x4+x2+1),
So, d/dxddx = (2x-3)(x^4+x^2+1)^((2x-3)-1)(2)+(4x^3+2x)(2x3)(x4+x2+1)(2x3)1(2)+(4x3+2x)
d/dxddx =(4x-6)(x^4+x^2+1)^(2x-4)+(4x^3+2x)(4x6)(x4+x2+1)2x4+(4x3+2x)