Write x^(1/2)x12 as sqrtx√x:
int_0^1 1/(1+sqrtx) dx∫1011+√xdx
To do the indefinite integral, I used a tip from WolframAlpha :
Let u = sqrtxu=√x then du = 1/(2sqrtx)dxdu=12√xdx
We need to solve for dxdx:
dx = 2sqrtxdudx=2√xdu
But sqrtx = u√x=u:
dx = 2ududx=2udu
Perform the substitutions:
int 1/(1+(x)^(1/2)) dx = 2 int u/(u+1) du∫11+(x)12dx=2∫uu+1du
Add 0 to the numerator in the form if +1 - 1+1−1
int 1/(1+(x)^(1/2)) dx = 2 int (u+1-1)/(u+1) du∫11+(x)12dx=2∫u+1−1u+1du
Separate into two fractions:
int 1/(1+(x)^(1/2)) dx = 2 int (u+1)/(u+1)-1/(u+1) du∫11+(x)12dx=2∫u+1u+1−1u+1du
The first fraction becomes 1:
int 1/(1+(x)^(1/2)) dx = 2 int 1-1/(u+1) du∫11+(x)12dx=2∫1−1u+1du
Both terms are trival to integrate:
int 1/(1+(x)^(1/2)) dx = 2 (u-ln(u+1))+C∫11+(x)12dx=2(u−ln(u+1))+C
Reverse the substitution:
int 1/(1+(x)^(1/2)) dx = 2 (sqrtx-ln(sqrtx+1))+C∫11+(x)12dx=2(√x−ln(√x+1))+C
To integrate from 0 to 1 we evaluate the right side at x = 1x=1 and subtract the right side evaluated at x = 0x=0:
int_0^1 1/(1+(x)^(1/2)) dx = {2(sqrt1-ln(sqrt1+1))+C}-{2(sqrt0-ln(sqrt0+1))+C}∫1011+(x)12dx={2(√1−ln(√1+1))+C}−{2(√0−ln(√0+1))+C}
The constants of integration sum to 0 and sqrt0 - ln(1) = 0√0−ln(1)=0, therefore, the answer is:
int_0^1 1/(1+(x)^(1/2)) dx = 2-2ln(2)∫1011+(x)12dx=2−2ln(2)