How do you integrate int_0^1 1/(1+(x)^(1/2)) dx1011+(x)12dx ?

2 Answers
Feb 14, 2018

Write x^(1/2)x12 as sqrtxx:

int_0^1 1/(1+sqrtx) dx1011+xdx

To do the indefinite integral, I used a tip from WolframAlpha :

Let u = sqrtxu=x then du = 1/(2sqrtx)dxdu=12xdx

We need to solve for dxdx:

dx = 2sqrtxdudx=2xdu

But sqrtx = ux=u:

dx = 2ududx=2udu

Perform the substitutions:

int 1/(1+(x)^(1/2)) dx = 2 int u/(u+1) du11+(x)12dx=2uu+1du

Add 0 to the numerator in the form if +1 - 1+11

int 1/(1+(x)^(1/2)) dx = 2 int (u+1-1)/(u+1) du11+(x)12dx=2u+11u+1du

Separate into two fractions:

int 1/(1+(x)^(1/2)) dx = 2 int (u+1)/(u+1)-1/(u+1) du11+(x)12dx=2u+1u+11u+1du

The first fraction becomes 1:

int 1/(1+(x)^(1/2)) dx = 2 int 1-1/(u+1) du11+(x)12dx=211u+1du

Both terms are trival to integrate:

int 1/(1+(x)^(1/2)) dx = 2 (u-ln(u+1))+C11+(x)12dx=2(uln(u+1))+C

Reverse the substitution:

int 1/(1+(x)^(1/2)) dx = 2 (sqrtx-ln(sqrtx+1))+C11+(x)12dx=2(xln(x+1))+C

To integrate from 0 to 1 we evaluate the right side at x = 1x=1 and subtract the right side evaluated at x = 0x=0:

int_0^1 1/(1+(x)^(1/2)) dx = {2(sqrt1-ln(sqrt1+1))+C}-{2(sqrt0-ln(sqrt0+1))+C}1011+(x)12dx={2(1ln(1+1))+C}{2(0ln(0+1))+C}

The constants of integration sum to 0 and sqrt0 - ln(1) = 00ln(1)=0, therefore, the answer is:

int_0^1 1/(1+(x)^(1/2)) dx = 2-2ln(2)1011+(x)12dx=22ln(2)

Feb 14, 2018

f(x) = 1/(1+sqrtx)f(x)=11+x

let sqrtx=tx=t
x=t^2x=t2
differentiating both the sides,
dx = 2t.dtdx=2t.dt

intf(x) = int1/(1+sqrtx) dxf(x)=11+xdx
= int1/(1+t) 2t. dt = int(2t)/(1+t) dt=11+t2t.dt=2t1+tdt
applying simple polynomial division,
int (2-(2)/(1+t)) dt(221+t)dt
int 2.dt-int(2)/(1+t) dt2.dt21+tdt
2intdt-2int1/(1+t) dt2dt211+tdt
2t-2ln(1+t) +c2t2ln(1+t)+c

replacing, t=sqrtxt=x
2sqrtx-2ln(1+sqrtx) +c2x2ln(1+x)+c

now, applying the limits,
2sqrt1-2ln(1+sqrt1) - (2sqrt0-2ln(1+sqrt0))212ln(1+1)(202ln(1+0))
2-2ln(1+1) - (-2ln(1))22ln(1+1)(2ln(1)) as color(purple)(sqrt1=1; sqrt0=0;ln1=01=1;0=0;ln1=0
2-2ln2 22ln2