Question #6fb9d

1 Answer
Feb 4, 2018

sf(("d"theta)/dt=- 0.02color(white)(x)" rad/s")

In degrees:

sf(("d"theta)/dt=-1.15^@"/s")

Explanation:

MFDocs

We are told:

sf((dX)/dt=8color(white)(x)"ft/s")

We need to find sf(("d"theta)/dt

From the geometry of the situation, Pythagoras tells us:

sf(X^2+100^2=200^2)

sf(X^2+10,000=40,000)

sf(X=sqrt(30,000)color(white)(x)ft)

and

sf(sintheta=100/200=0.5)

sf(theta=30^@)

At this instant:

sf(tantheta=100/X)

Differentiating implicitly with respect to time t :

sf(d/dt[tantheta]=d/dt[100/X])

sf(sec^2theta.("d"theta)/dt=-100/(X^2).(dX)/dt)

sf(("d"theta)/dt=-(100cos^2theta)/(X^2).(dX)/dt)

Putting in the numbers:

sf(("d"theta)/dt=-100xxcos^2(30)/(30,000)xx8)

sf(("d"theta)/dt=-100xx0.75/(30,000)xx8=-0.02color(white)(x)"rad/s")

sf(2picolor(white)(x)"rad"=360^@)

:.sf(1color(white)(x)"rad"=360/(2pi)=57.3^@)

:.sf(0.02color(white)(x)"rad"=57.2xx0.02=1.15^@)

In degrees:

sf(("d"theta)/dt=-1.15^@"/s")