Question #6fb9d

1 Answer
Feb 4, 2018

#sf(("d"theta)/dt=- 0.02color(white)(x)" rad/s")#

In degrees:

#sf(("d"theta)/dt=-1.15^@"/s")#

Explanation:

MFDocs

We are told:

#sf((dX)/dt=8color(white)(x)"ft/s")#

We need to find #sf(("d"theta)/dt#

From the geometry of the situation, Pythagoras tells us:

#sf(X^2+100^2=200^2)#

#sf(X^2+10,000=40,000)#

#sf(X=sqrt(30,000)color(white)(x)ft)#

and

#sf(sintheta=100/200=0.5)#

#sf(theta=30^@)#

At this instant:

#sf(tantheta=100/X)#

Differentiating implicitly with respect to time t :

#sf(d/dt[tantheta]=d/dt[100/X])#

#sf(sec^2theta.("d"theta)/dt=-100/(X^2).(dX)/dt)#

#sf(("d"theta)/dt=-(100cos^2theta)/(X^2).(dX)/dt)#

Putting in the numbers:

#sf(("d"theta)/dt=-100xxcos^2(30)/(30,000)xx8)#

#sf(("d"theta)/dt=-100xx0.75/(30,000)xx8=-0.02color(white)(x)"rad/s")#

#sf(2picolor(white)(x)"rad"=360^@)#

#:.##sf(1color(white)(x)"rad"=360/(2pi)=57.3^@)#

#:.##sf(0.02color(white)(x)"rad"=57.2xx0.02=1.15^@)#

In degrees:

#sf(("d"theta)/dt=-1.15^@"/s")#