We are told:
sf((dX)/dt=8color(white)(x)"ft/s")
We need to find sf(("d"theta)/dt
From the geometry of the situation, Pythagoras tells us:
sf(X^2+100^2=200^2)
sf(X^2+10,000=40,000)
sf(X=sqrt(30,000)color(white)(x)ft)
and
sf(sintheta=100/200=0.5)
sf(theta=30^@)
At this instant:
sf(tantheta=100/X)
Differentiating implicitly with respect to time t :
sf(d/dt[tantheta]=d/dt[100/X])
sf(sec^2theta.("d"theta)/dt=-100/(X^2).(dX)/dt)
sf(("d"theta)/dt=-(100cos^2theta)/(X^2).(dX)/dt)
Putting in the numbers:
sf(("d"theta)/dt=-100xxcos^2(30)/(30,000)xx8)
sf(("d"theta)/dt=-100xx0.75/(30,000)xx8=-0.02color(white)(x)"rad/s")
sf(2picolor(white)(x)"rad"=360^@)
:.sf(1color(white)(x)"rad"=360/(2pi)=57.3^@)
:.sf(0.02color(white)(x)"rad"=57.2xx0.02=1.15^@)
In degrees:
sf(("d"theta)/dt=-1.15^@"/s")