Question #9773c

1 Answer
Jan 28, 2018

(See solution process below)

Explanation:

We will prove this showing that #L.H.S=R.H.S#
Consider#L.H.S:#
#4sinQcosQ=2[2sinQcosQ]=2sin2Q#
Hence we get the #L.H.S.= 2sin2Q#
Now consider #R.H.S.#
#(sin4Q)/(cos2Q)rArr[sin2(2Q)]/[cos2Q]##rArr[2sin2Qcos2Q]/[cos2Q]##rArr2sin2Q#
Hence #R.H.S=2sin2Q#
#:.R.H.S=L.H.S#