Question #9773c

1 Answer
Jan 28, 2018

(See solution process below)

Explanation:

We will prove this showing that L.H.S=R.H.SL.H.S=R.H.S
ConsiderL.H.S:L.H.S:
4sinQcosQ=2[2sinQcosQ]=2sin2Q4sinQcosQ=2[2sinQcosQ]=2sin2Q
Hence we get the L.H.S.= 2sin2QL.H.S.=2sin2Q
Now consider R.H.S.R.H.S.
(sin4Q)/(cos2Q)rArr[sin2(2Q)]/[cos2Q]sin4Qcos2Qsin2(2Q)cos2QrArr[2sin2Qcos2Q]/[cos2Q]2sin2Qcos2Qcos2QrArr2sin2Q2sin2Q
Hence R.H.S=2sin2QR.H.S=2sin2Q
:.R.H.S=L.H.S