Question #4886a

1 Answer
Jan 24, 2018

See below.

Explanation:

y = pcos(2x)+qsin(2x)y=pcos(2x)+qsin(2x)

First differentiate:

dy/dx=-2p sin(2x)+2qcos(2x)dydx=2psin(2x)+2qcos(2x)

(d^2y)/(dx^2)=-4p cos(2x)-4qsin(2x)d2ydx2=4pcos(2x)4qsin(2x)

Now substitute into:

(d^2y)/(dx^2)+4yd2ydx2+4y

=-4p sin(2x)-4qcos(2x)+4(p sin(2x)+qcos(2x))=4psin(2x)4qcos(2x)+4(psin(2x)+qcos(2x))

=-4p sin(2x)-4qcos(2x)+4p sin(2x)+4qcos(2x)=4psin(2x)4qcos(2x)+4psin(2x)+4qcos(2x)

=-4p sin(2x)+4p sin(2x)-4qcos(2x)+4qcos(2x)=4psin(2x)+4psin(2x)4qcos(2x)+4qcos(2x)

=0=0