Use the chain rule to find d/dx[tan(sqrtx)]ddx[tan(x)] ?

2 Answers
Jan 11, 2018

dy/dx= (sec^2sqrtx)/(2sqrtx)dydx=sec2x2x

Explanation:

y = tansqrtxy=tanx

Apply the chain rule and standard differential.

dy/dx= sec^2sqrtx *d/dx sqrtxdydx=sec2xddxx

Apply power rule.

dy/dx = sec^2sqrtx * 1/2x^(-1/2)dydx=sec2x12x12

= (sec^2sqrtx)/(2sqrtx)=sec2x2x

Jan 11, 2018

d/dx[tan(sqrtx)]=sec^2(sqrtx)/(2sqrtx)ddx[tan(x)]=sec2(x)2x

Explanation:

Apply the chain rule:

d/dx[f(g(x))]=f'(g(x))*g'(x)

Let f(x)=tan(x) and g(x)=sqrtx

Thus, f'(x)=sec^2x and g'(x)=1/(2sqrtx)

So

d/dx[tan(sqrtx)]=sec^2(sqrtx)*1/(2sqrtx)=sec^2(sqrtx)/(2sqrtx)