Let's first simplify #sin(arctan(x/sqrt(3)))#.
We know that #sin^2(theta)+cos^2(theta)=1#. Divide both sides by #sin(theta)^2# to get #1+1/tan^2(theta)=1/sin^2(theta)#, or #sin^2(theta)=1/(1+1/tan^2(theta))#.
Thus, #sin(theta)=sqrt(1/(1+1/tan^2(theta)))#.
So, using the above identity, #sin(arctan(x/sqrt(3)))=sqrt(1/(1+1/tan^2(arctan(x/sqrt(3)))))#.
Simplify:
#=sqrt(1/(1+1/(x^2/3)))=x/sqrt(x^2+3)#.
To differentiate this, use the quotient rule #d/dx(u/v)=((du)/dxv-(dv)/dxu)/v^2# to find the final answer
#d/dx(x/sqrt(x^2+3))=(sqrt(x^2+3)-x^2/sqrt(x^2+3))/(x^2+3)=3/(x^2+3)^(3/2)#