For the function f(x)=(x-3)^3+1 find f^-1(x) ?

1 Answer
Jan 8, 2018

f^-1(x)=root(3)(y-1)+3

Explanation:

f(x)=(x-3)^3+1

or

y=(x-3)^3+1

To find the inverse function f^-1(x), we arrange the equation in terms of x.

y=(x-3)^3+1

y-1=(x-3)^3

x-3=root(3)(y-1)

x=root(3)(y-1)+3

So, the inverse of f(x)=(x-3)^3+1 is

f^-1(x)=root(3)(y-1)+3