Question #62823

1 Answer
Jan 7, 2018

#=1/(2sqrt(7))sin^(-1)(sqrt7w)+w/2sqrt(1-7w^2) +C#

Explanation:

#intsqrt(1-7w^2)dw#

Consider the substitution:

#sqrt(7)w=sintheta#

#-> dw=1/sqrt(7)costheta d theta#

Substituting these into the integral:

#intsqrt(1-sin^2theta)*1/sqrt(7)costhetad theta#

We can use #1-sin^2theta=cos^2theta# to get:

#=1/sqrt(7)intsqrt(cos^2theta)*costheta d theta#

#=1/sqrt(7)intcosthetacostheta d theta=1/sqrt(7)intcos^2theta d theta#

Now use the trig identity:

#cos^2theta = 1/2+1/2cos2theta#

So the integral now becomes:

#1/sqrt(7)int1/2+1/2cos2theta d theta=1/(2sqrt7)int1+cos2theta d theta#

#=1/(2sqrt(7))(theta+1/2sin2theta) +C#

Now use the trig identity:

#sin(2theta)=2costhetasintheta# to get:

#=1/(2sqrt(7))(theta+costhetasintheta) +C#

#=1/(2sqrt(7))(theta+sqrt(1-sin^2theta)sintheta) +C#

Now we can reverse the substitution we started with:

#=1/(2sqrt(7))(sin^(-1)(sqrt7w)+sqrt(1-7w^2)sqrt7w) +C#

#=1/(2sqrt(7))sin^(-1)(sqrt7w)+w/2sqrt(1-7w^2) +C#