Question #94b54

1 Answer
Jan 4, 2018

#f'(x)=ln(x)+1#

#int_e^(2e)ln(x)dx = 2eln(2)~~3.76834#

Explanation:

We have

#f(x) = xln(x)#

Its derivative can be found with the product rule:

#f'(x) = d/dx{x}ln(x)+xd/dx{ln(x)}#

#=1*ln(x)+x*1/x#

#=ln(x)+1#

Now that we have #f'(x)# we can use this to evaluate the integral:

#int_e^(2e)ln(x)dx#

Now we use a simple trick of adding #1# and subtracting #1# like this:

#=int_e^(2e)ln(x)+1-1dx#

We can now break this integral down like so:

#=int_e^(2e)ln(x)+1dx+int_e^(2e)-1dx#

#=int_e^(2e)ln(x)+1dx-int_e^(2e)1dx#

We already have the answer to the first integral from the first part of the question: the expression inside the integral is what we found for #f'(x)# so the integral will simply be #f(x)#. The second integral will of course just be #-x#. So evaluating the integral and its limits yiels:

#=[xln(x)]_e^(2e)-[x]_e^(2e)#

#={(2e)ln(2e)}-{eln(e)}-({2e}-{e})#

#2eln(2e)-e-2e+e#

#2e(ln(2e)-1)=2e(ln2+lne-1)#

#2eln(2)~~3.76834#