Question #c4abb

2 Answers
Jan 3, 2018

y(x) = sinx/x-cosx

Explanation:

Start by solving the homogeneous equation:

xdy/dx+y =0

For x!=0 the equation is separable and we have:

dy/dx =-y/x

dy/y = -dx/x

lnabsy = -lnabsx+c

y=-C/x

We can now look for a particular solution in the form:

bary(x) = -C/xv(x)

(dbary)/dx = C/x^2v(x) - C/xv'(x)

Substituting in the original equation:

x(dbary)/dx +bary = xsinx

C/xv(x) -Cv'(x) - C/xv(x) = xsinx

v'(x) = - x/Csinx

v(x) = -1/C int xsinxdx

Integrating by parts:

v(x) = 1/Cxcosx -1/C int cosxdx

v(x) = 1/Cxcosx -1/C sinx +C_1

and so:

bary(x) = -C/x v(x) = -cosx +sinx/x-(C C_1)/x

The general solution is then:

y(x) =-C/x-cosx+sinx/x

and posing y(pi) = 1 we can determine the constant:

1= -C/pi -cospi + sin pi/pi

1= -C/pi +1

so C=0

Finally:

y(x) = sinx/x-cosx

Jan 3, 2018

y=-cosx+sinx/x

Explanation:

xdy/dy+y=xsinx
dy/dy+y/x=sinx

integrating factor,
=inte^(1/x)dx =x

yx=intsinx.xdx

integration by parts,
intsinx.xdx=-xcosx+sinx+C

therefore,
xy=-xcosx+sinx+C

y(pi)=1 rArrwhen x= pi, y=1

pi =-picospi+sinpi+C

c=0

therefore,

xy=-xcosx+sinx
or
y=-cosx+sinx/x