If tanA+sinA=p and tanA-sinA=q. Then proove that p^2-q^2=4sqrt (pq)p2q2=4pq ?

3 Answers

It is proved below:

Explanation:

Here,
tanA+sinA=ptanA+sinA=p

tanA-sinA=qtanAsinA=q

L.H.S=p^2-q^2L.H.S=p2q2

=(tanA+sinA)^2-(tanA-sinA)^2=(tanA+sinA)2(tanAsinA)2

=(tanA+cancelsinA+tanA-cancelsinA)(canceltanA+sinA-canceltanA+sinA)

=(2tanA)cdot(2sinA)

=4tanAsinA

=4sqrt(tan^2Asin^2A)

=4sqrt((sec^2A-1)sinA)color(blue)([[As,sec^2theta-tan^2theta=1]])

=4sqrt(sec^2A.sin^2A-sin^2A)

=4sqrt(sin^2A/(cos^2A)-sin^2A)

=4sqrt(tan^2A-sin^2A)

=4sqrt((tanA+sinA)(tanA-sinA))

=4sqrt(pq)color(green)([As.tanA+sinA=pandtanA-sinA=q])

=R.H.S

Dec 30, 2017

Kindly refer to the Explanation.

Explanation:

tanA+sinA=p......(1), and, tanA-sinA=q......(2).

:. (1)+(2) rArr 2tanA=p+q, or, tanA=(p+q)/2.

"Similarly, "sinA=(p-q)/2.

:. cotA=2/(p+q), and cscA=2/(p-q).

But, csc^2A-cot^2A=1,

rArr 4/(p-q)^2-4/(p+q)^2=1, or, .

[4{(p+q)^2-(p-q)^2}]/{(p+q)^2(p-q)^2}=1.

rArr (4*4pq)/(p^2-q^2)^2=1, i.e.,

(p^2-q^2)^2=16pq,

rArr p^2-q^2=4sqrt(pq), as desired!

Enjoy Maths.!

Dec 30, 2017

RHS=4sqrt(pq)

=4sqrt((tanA+sinA)(tanA-sinA))

=4sqrt(tan^2A-sin^2A)

=4sqrt(sin^2A/cos^2A-sin^2A)

=4sqrt(sin^2Axxsec^2A-sin^2A)

=4sqrt(sin^2A(sec^2A-1)

=4sqrt(sin^2Atan^2A)

=4tanAsinA

=(tanA+sinA)^2-(tanA-sinA)^2

=p^2-q^2=RHS