How do you find the domain and range of f(x)=sqrt (x+7)/(x^2+7)f(x)=x+7x2+7?

1 Answer
Dec 25, 2017

domainRR={x:x inRR,x>=(-7)}and rangeRR={y:y inRR,y>=0}

Explanation:

Suppose,y=f(x)=sqrt(x+7)/(x^2+7)
If x<(-7), the mentioned equation can not be definable.

sqrt(x+7)/(x^2+7)=indefinable,when x<(-7.)color(brown)[[As.sqrt(-x in RR)=(INDEFINABLE)]]

Hence,DomainRR=color(red){{x:x inRR,x>=(-7)}

For the value of domain set,range of the equation will be greater than or equal 0

*So,RangeRR=color(blue){{y:y inRR,y>=0} *