Reminder :
Euler's relation
e^(itheta)=costheta+isinthetaeiθ=cosθ+isinθ
Here, we have
z=e^(13/8pi)-e^(5/4pi)=cos(13/8pi)+isin(13/8pi)-cos(5/4pi)-isin(5/4pi)z=e138π−e54π=cos(138π)+isin(138π)−cos(54π)−isin(54π)
Therefore,
13/8pi=5/8pi+pi=1/8pi+3/2pi138π=58π+π=18π+32π
5/4pi=1/4pi+pi54π=14π+π
cos(1/4pi)=1-2sin^2(1/8pi)=2cos^2(1/8pi)-1cos(14π)=1−2sin2(18π)=2cos2(18π)−1
sin(1/8pi)=sqrt((1-cos(1/4pi))/2)=sqrt((1-sqrt2/2)/(2))=(sqrt(2-sqrt2))/2sin(18π)=√1−cos(14π)2=√1−√222=√2−√22
cos(1/8pi)=sqrt((1+cos(1/4pi))/2)=sqrt((1+sqrt2/2)/(2))=(sqrt(2+sqrt2))/2cos(18π)=√1+cos(14π)2=√1+√222=√2+√22#
So,
z=cos(1/8pi+3/2pi)+isin(1/8pi+3/2pi)-cos(1/4pi+pi)-isin(1/4pi+pi)z=cos(18π+32π)+isin(18π+32π)−cos(14π+π)−isin(14π+π)
cos(1/8pi+3/2pi)=cos(1/8pi)cos(3/2pi)-sin(1/8pi)sin(3/2pi)cos(18π+32π)=cos(18π)cos(32π)−sin(18π)sin(32π)
=(sqrt(2+sqrt2))/2*0-(sqrt(2-sqrt2))/2*(-1)=(sqrt(2-sqrt2))/2=√2+√22⋅0−√2−√22⋅(−1)=√2−√22
sin(1/8pi+3/2pi)=sin(1/8pi)cos(3/2pi)+cos(1/8pi)sin(3/2pi)sin(18π+32π)=sin(18π)cos(32π)+cos(18π)sin(32π)
=(sqrt(2-sqrt2))/2*0+(sqrt(2+sqrt2))/2*(-1)=-(sqrt(2+sqrt2))/2=√2−√22⋅0+√2+√22⋅(−1)=−√2+√22
cos(1/4pi+pi)=cos(1/4pi)cos(pi)-sin(1/4pi)sin(pi)cos(14π+π)=cos(14π)cos(π)−sin(14π)sin(π)
=sqrt2/2*-1-sqrt2/2*0=-sqrt2/2=√22⋅−1−√22⋅0=−√22
sin(1/4pi+pi)=sin(1/4pi)cos(pi)+cos(1/4pi)sin(pi)sin(14π+π)=sin(14π)cos(π)+cos(14π)sin(π)
=sqrt2/2*-1+sqrt2/2*0=sqrt2/2=√22⋅−1+√22⋅0=√22
Finally,
z=(sqrt(2-sqrt2))/2-i(sqrt(2+sqrt2))/2+sqrt2/2-isqrt2/2z=√2−√22−i√2+√22+√22−i√22
=((sqrt(2-sqrt2))/2+sqrt2/2)-i((sqrt(2+sqrt2))/2+sqrt2/2)=(√2−√22+√22)−i(√2+√22+√22)