How do you evaluate e^( ( 13 pi)/8 i) - e^( ( 5 pi)/4 i)e13π8ie5π4i using trigonometric functions?

2 Answers
Dec 18, 2017

Euler's theorem: e^(itheta)=costheta-isinthetaeiθ=cosθisinθ

Explanation:

e^((13pi)/8i)-e^((5pi)/4i)e13π8ie5π4i
=(cos((13pi)/8)+isin((13pi)/8))-(cos((5pi)/4)+isin((5pi)/4))=(cos(13π8)+isin(13π8))(cos(5π4)+isin(5π4))
=sin(pi/8)-icos(pi/8)-1/sqrt(2)+1/sqrt(2)i=sin(π8)icos(π8)12+12i
~=-0.32442 - 0.21677 i0.324420.21677i

Dec 18, 2017

The answer is =((sqrt(2-sqrt2))/2+sqrt2/2)-i((sqrt(2+sqrt2))/2+sqrt2/2)=(222+22)i(2+22+22)

Explanation:

Reminder :

Euler's relation

e^(itheta)=costheta+isinthetaeiθ=cosθ+isinθ

Here, we have

z=e^(13/8pi)-e^(5/4pi)=cos(13/8pi)+isin(13/8pi)-cos(5/4pi)-isin(5/4pi)z=e138πe54π=cos(138π)+isin(138π)cos(54π)isin(54π)

Therefore,

13/8pi=5/8pi+pi=1/8pi+3/2pi138π=58π+π=18π+32π

5/4pi=1/4pi+pi54π=14π+π

cos(1/4pi)=1-2sin^2(1/8pi)=2cos^2(1/8pi)-1cos(14π)=12sin2(18π)=2cos2(18π)1

sin(1/8pi)=sqrt((1-cos(1/4pi))/2)=sqrt((1-sqrt2/2)/(2))=(sqrt(2-sqrt2))/2sin(18π)=1cos(14π)2=1222=222

cos(1/8pi)=sqrt((1+cos(1/4pi))/2)=sqrt((1+sqrt2/2)/(2))=(sqrt(2+sqrt2))/2cos(18π)=1+cos(14π)2=1+222=2+22#

So,
z=cos(1/8pi+3/2pi)+isin(1/8pi+3/2pi)-cos(1/4pi+pi)-isin(1/4pi+pi)z=cos(18π+32π)+isin(18π+32π)cos(14π+π)isin(14π+π)

cos(1/8pi+3/2pi)=cos(1/8pi)cos(3/2pi)-sin(1/8pi)sin(3/2pi)cos(18π+32π)=cos(18π)cos(32π)sin(18π)sin(32π)

=(sqrt(2+sqrt2))/2*0-(sqrt(2-sqrt2))/2*(-1)=(sqrt(2-sqrt2))/2=2+220222(1)=222

sin(1/8pi+3/2pi)=sin(1/8pi)cos(3/2pi)+cos(1/8pi)sin(3/2pi)sin(18π+32π)=sin(18π)cos(32π)+cos(18π)sin(32π)

=(sqrt(2-sqrt2))/2*0+(sqrt(2+sqrt2))/2*(-1)=-(sqrt(2+sqrt2))/2=2220+2+22(1)=2+22

cos(1/4pi+pi)=cos(1/4pi)cos(pi)-sin(1/4pi)sin(pi)cos(14π+π)=cos(14π)cos(π)sin(14π)sin(π)

=sqrt2/2*-1-sqrt2/2*0=-sqrt2/2=221220=22

sin(1/4pi+pi)=sin(1/4pi)cos(pi)+cos(1/4pi)sin(pi)sin(14π+π)=sin(14π)cos(π)+cos(14π)sin(π)

=sqrt2/2*-1+sqrt2/2*0=sqrt2/2=221+220=22

Finally,

z=(sqrt(2-sqrt2))/2-i(sqrt(2+sqrt2))/2+sqrt2/2-isqrt2/2z=222i2+22+22i22

=((sqrt(2-sqrt2))/2+sqrt2/2)-i((sqrt(2+sqrt2))/2+sqrt2/2)=(222+22)i(2+22+22)