Making y = 4n+5y=4n+5 we have
((y-5)/y)^((y-5)/2) = (1-5/y)^(y/2) (1-5/y)^(-5/2)(y−5y)y−52=(1−5y)y2(1−5y)−52
now making xi = -y/5ξ=−y5 and substituting
(1-5/y)^(y/2) (1-5/y)^(-5/2) = (1+1/xi)^(-5/2 xi)(1+1/xi)^(-5/2) =(1−5y)y2(1−5y)−52=(1+1ξ)−52ξ(1+1ξ)−52=
= ( (1+1/xi)^xi)^(-5/2)(1+1/xi)^(-5/2)=((1+1ξ)ξ)−52(1+1ξ)−52
Now n->oo rArr y->oo rArr xi -> -oon→∞⇒y→∞⇒ξ→−∞ and
lim_(n->oo)((4 n)/(4 n + 5))^(2 n) = lim_(xi->-oo)( (1+1/xi)^xi)^(-5/2)(1+1/xi)^(-5/2) =
(lim_(xi->-oo) (1+1/xi)^xi)^(-5/2)lim_(xi->oo)(1+1/xi)^(-5/2) = e^(-5/2)
NOTE
We were using the fact
lim_(xi->-oo) (1+1/xi)^xi = lim_(xi->oo) (1+1/xi)^xi = e