Question #dd613

2 Answers

sinxsinx

Explanation:

First simplify the inverse trig identities.
cscx=1/sinxcscx=1sinx; cotx=cosx/sinxcotx=cosxsinx
Plugging those in you get
1/sinx-cosx(cosx/sinx)1sinxcosx(cosxsinx) multiply
1/sinx-cos^2x/sinx1sinxcos2xsinx combine them together
(1-cos^2x)/sinx1cos2xsinx Use trig identities of squared trig functions
sin^2x+cos^2x=1 => sin^2x=1-cos^2xsin2x+cos2x=1sin2x=1cos2x
sin^2x/sinx=>sinxsin2xsinxsinx Reduce

Dec 15, 2017

cscx-cosx*cotx=sinxcscxcosxcotx=sinx

Explanation:

cscx-cosx*cotxcscxcosxcotx

=1/sinx-cosx*cosx/sinx1sinxcosxcosxsinx

=[1-(cosx)^2]/sinx1(cosx)2sinx

=(sinx)^2/sinx(sinx)2sinx

=sinxsinx