Question #7fce1

2 Answers
Dec 7, 2017

x = pi/4 + 2pik, pi/2 + 2pik, 3pi/4 + 2pikx=π4+2πk,π2+2πk,3π4+2πk (Period of sin(x) and cos(x) is 2pi2π)

Explanation:

Assuming sin(2x)sin(x) = cos(x)sin(2x)sin(x)=cos(x), begin by using the double angle identity, sin(2u) = 2sin(u)cos(u)sin(2u)=2sin(u)cos(u) to rewrite the equation.

sin(2x)sin(x) = cos(x) rarr 2sin(x)sin(x)cos(x) = cos(x) rarr 2sin^2(x)cos(x) = cos(x)sin(2x)sin(x)=cos(x)2sin(x)sin(x)cos(x)=cos(x)2sin2(x)cos(x)=cos(x)

Next subtract cos(x) from the right side to the left to make the equation equal to zero.

2sin^2(x)cos(x)-cos(x) = 02sin2(x)cos(x)cos(x)=0

Factor out cos(x) and separate

cos(x)*(2sin^2(x)-1) = 0 rarr cos(x) = 0cos(x)(2sin2(x)1)=0cos(x)=0 and 2sin^2(x)-1 = 02sin2(x)1=0

Find the exact values using the unit circle or right triangle method, cos(x) = 0cos(x)=0 when x = pi/2x=π2 and sin(x) = sqrt(2)/2sin(x)=22 when x = pi/4, 3pi/4x=π4,3π4 (Remember restrictions sin(x): R(-pi/2, pi/2); cos(x): R(0, pi)sin(x):R(π2,π2);cos(x):R(0,π)

Dec 7, 2017

Answers:
x = pi/2 + kpix=π2+kπ
x = pi/4 + (kpi)/2x=π4+kπ2

Explanation:

sin 2x.sin x - cos x = 0sin2x.sinxcosx=0
Replace sin 2x by (2sin x.cos x).
2sin^2 x.cos x - cos x = 02sin2x.cosxcosx=0
cos x(2sin^2 x - 1) = 0cosx(2sin2x1)=0
Either factor should be zero.
A. cos x = 0. Unit circle give 2 solutions:
x = pi/2,x=π2, and x = (3pi)/2x=3π2
General answer: x = pi/2 + kpi x=π2+kπ
B. 2sin^2 x - 1 = 02sin2x1=0 --> sin^2 x = 1/2sin2x=12
sin x = +- sqrt2/2sinx=±22
a. sin x = sqrt2/2sinx=22. Trig table and unit circle give 2 solutions:
x = pi/4 x=π4, and x = pi - pi/4 = (3pi)/4x=ππ4=3π4
b. sin x = -sqrt2/2sinx=22. Unit circle gives -->
x = pi + pi/4 = (5pi)/4x=π+π4=5π4 and x = 2pi - pi/4 = (7pi)/4x=2ππ4=7π4
General answer: x = pi/4 + (kpi)/2x=π4+kπ2