Question #1ac69
↳Redirected from
"What are the recent changes I've noticed on Socratic?"
This set of linear equations could be solved by various methods including 1. equation manipulation and variable elimination, 2. matrix inversion, 3. augmented matrix, etc. Let's try 1:
#color(red)(-6r+5s+2t=-11) color(white)"&&&&&&&&&&&&"(1)#
#color(blue)(-2r+s+4t=-9) color(white)"&&&&&&& & & & &&"(2)#
#color(magenta)(4r-5s+5t=-4) color(white)"&&&&&&& & & &&&&"(3)#
To begin, we'll eliminate #r# using two different pair of equations. Take #(1) - 3*(2)#:
#color(red)(-6r) color(blue)(+ 6r) color(red)(+5s) color(blue)(-3s) color(red)(+ 2t) color(blue)( -12t) = color(red)(-11) color(blue)( + 27)#
#2s - 10t = 16 color(white)"&&&&&&&&&&&&&&&&&"(4)#
Take #2*(2)+(3)#:
#color(blue)(-4r) color(magenta)(+4r) color(blue)(+2s) color(magenta)(-5s) color(blue)(+ 8t) color(magenta)(+5t) = color(blue)(-18) color(magenta)( -4)#
#-3s + 13t = -22 color(white)"&&&&&&&&&&&&&&&"(5)#
Now eliminate #s# by taking #3*(4)+2*(5)#:
#6s-6s-30t+26t=48-44#
#-4t=4#
#t=-1#
Let's substitute #t# back into #(1)# and #(2)#:
#-6r+5s-2=-11#
#-6r+5s = -9 color(white)"&&&&&&&&&&&&&&&"(6)#
#-2r+s-4=-9#
#-2r+s=-5 color(white)"&&&&&&&&&&&&&&&&"(7)#
Now take #(6) - 3*(7)#:
#-6r+6r+5s-3s = -9+15#
#2s=6#
#s=3#
Finally substitute #s# back into #(6)#
#-6r+15=-9#
#-6r=-24#
#r=4#
Summarizing:
#r=4; s=3; t=-1#