Solving equation?

6x^2+x= 40

Thank guys!

1 Answer
Dec 2, 2017

2 real solutions:

x=2.5\quad,\quad x=-2.\overline{6}

Explanation:

Let’s first rearrange the equation:

6x^2+x-40=0

It’s a quadratic equation, which we can use the quadratic equation to solve.

Since the equation is in standard form, let’s define the variables:

  • a=6
  • b=1
  • c=-40

We can now plug those values into the quadratic formula:

x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

\implies x=\frac{-1\pm\sqrt{(1)^2-4(6)(-40)}}{2(6)}

\implies x=\frac{-1\pm\sqrt{1+960}}{12}

\implies x=\frac{-1\pm 31}{12}

\implies x=2.5\quad,\quad x=-2.\overline{6}