If p( a ) = 6a ^ { 3} - 20a - 10, what is p ( - 6) and p ( \frac { 1} { 6} )?

1 Answer
Dec 2, 2017

p(-6)=-1196

p(\frac{1}{6})=-\frac{479}{36} or -13\frac{11}{36}

Explanation:

To find the values of p(-6) and p(1/6), we just need to plug those values into the function 6a^3-20a-10 for a.

Let’s plug in -6 for p first:

p(a)=6a^3-20a-10

\implies p(-6)=6(-6)^3-20(-6)-10

\implies p(-6)=6(-216)-(-120)-10

\implies p(-6)=-1296+120-10

\implies p(-6)=-1176-10

\implies p(-6)=-1186

Now we do the same for p=\frac{1}{6}:

p(a)=6a^3-20a-10

\implies p(\frac{1}{6})=6(\frac{1}{6})^3-20(\frac{1}{6})-10

\implies p(\frac{1}{6})=6(\frac{1}{216})-\frac{10}{3}-10

\implies p(\frac{1}{6})=\frac{1}{36}-\frac{10}{3}-10

\implies p(\frac{1}{6})=\frac{2}{72}-\frac{240}{72}-\frac{720}{72}

\implies p(\frac{1}{6})=-\frac{958}{72}

That can also be expressed as -13\frac{11}{33}