To find the values of p(-6) and p(1/6), we just need to plug those values into the function 6a^3-20a-10 for a.
Let’s plug in -6 for p first:
p(a)=6a^3-20a-10
\implies p(-6)=6(-6)^3-20(-6)-10
\implies p(-6)=6(-216)-(-120)-10
\implies p(-6)=-1296+120-10
\implies p(-6)=-1176-10
\implies p(-6)=-1186
Now we do the same for p=\frac{1}{6}:
p(a)=6a^3-20a-10
\implies p(\frac{1}{6})=6(\frac{1}{6})^3-20(\frac{1}{6})-10
\implies p(\frac{1}{6})=6(\frac{1}{216})-\frac{10}{3}-10
\implies p(\frac{1}{6})=\frac{1}{36}-\frac{10}{3}-10
\implies p(\frac{1}{6})=\frac{2}{72}-\frac{240}{72}-\frac{720}{72}
\implies p(\frac{1}{6})=-\frac{958}{72}
That can also be expressed as -13\frac{11}{33}