#dy/dx = (x+2y+3)/(2x+y+3) rArr (2x+y+3) dy = (x+2y+3)dx#
Now we will do a series of variable transformations to get an amenable format in the differential equation
1) #{(x+2y = u),(2x+y = v):} rArr {(dx = 1/3(-du+2dv)),(dy=1/3(2du-dv)):}#
#(v+3)(2du-dv) = (u+3) (-du+2dv)#
Now making the transformation
2) #{(U = u+3),(V = v+3):} rArr {(dU = du),(dV = dv):}#
#V(2dU-dV) = U (-dU+2dV)# or
#2VdU-VdV=-UdU+2UdV#
Now making
3) #{(eta = U^2),(xi = V^2):} rArr {(1/2(d eta)/sqrt eta = dU),(1/2(d xi) /sqrt xi= dV):}#
#2 sqrt(xi/eta)d eta - d xi = - d eta + 2 sqrt(eta/xi) d xi# or
#(2 sqrt(xi/eta)+1)d eta = (2 sqrt(eta/xi)+1)d xi#
now introducing
4) #eta = lambda xi rArr d eta = lambda d xi + xi d lambda#
#(2/sqrt lambda +1)(lambda d xi+xi d lambda) = (2 sqrtlambda+1)d xi#
or grouping variables
#(d xi)/xi + f(lambda)/(lambda f(lambda)-1) d lambda = 0#
with #f(lambda) = (2/sqrt lambda+1)/(2 sqrt lambda + 1)#
After integration we obtain
#log xi +3log(1-sqrt lambda)-log(1+sqrt lambda) = C_0# or
#xi= (C_1(1+sqrt lambda))/(1-sqrt lambda)^3# or
#V^2=(C_1 (1+U/V))/(1-U/V)^3# and finally
#(2x+y+3)^2 = (C_1(1+(x+2y+3)/(2x+y+3)))/(1-(x+2y+3)/(2x+y+3))^3#
An implicit form solution.
This can be reduced to
#(x-y)^3=C_2(x+y+2)#