2nd way: I didn't use symmetry
int_-oo^oo x^2/(x^6+9)*dx∫∞−∞x2x6+9⋅dx
=1/3*int_-oo^oo (3x^2*dx)/[(x^3)^2+9]13⋅∫∞−∞3x2⋅dx(x3)2+9
After using y=x^3y=x3 an dy=3x^2*dxdy=3x2⋅dx transformation, this integral became
1/3*int_-oo^oo dy/(y^2+9)13⋅∫∞−∞dyy2+9
Now I divided range of integral. First of it from -oo−∞ to aa and second of it from aa to oo∞.
1/3*int_-oo^a dy/(y^2+9)+1/3*int_a^oo dy/(y^2+9)13⋅∫a−∞dyy2+9+13⋅∫∞adyy2+9
=1/9*[arctan(y/3)]_-oo^a+1/9*[arctan(y/3)]_a^oo19⋅[arctan(y3)]a−∞+19⋅[arctan(y3)]∞a
=1/9*[arctan(a/3)-arctan(-oo)]+1/9*[arctan(oo)-arctan(a/3)]19⋅[arctan(a3)−arctan(−∞)]+19⋅[arctan(∞)−arctan(a3)]
=1/9*[arctan(oo)-arctan(-oo)]19⋅[arctan(∞)−arctan(−∞)]
=1/9*[pi/2-(-pi/2)]19⋅[π2−(−π2)]
=pi/9π9