Question #6f0de

2 Answers
Nov 22, 2017

int_-oo^oo x^2/(x^6+9)*dx=pi/9x2x6+9dx=π9

Explanation:

int_-oo^oo x^2/(x^6+9)*dxx2x6+9dx

=1/3*int_-oo^oo (3x^2*dx)/[(x^3)^2+9]133x2dx(x3)2+9

After using y=x^3y=x3 an dy=3x^2*dxdy=3x2dx transformation, this integral became

1/3*int_-oo^oo dy/(y^2+9)13dyy2+9

=2/3*int_0^oo dy/(y^2+9)230dyy2+9

=2/9*[arctan(y/3)]_0^oo29[arctan(y3)]0

=2/9*[arctan(oo)-arctan(0)]29[arctan()arctan(0)]

=2/9*(pi/2-0)29(π20)

=pi/9π9

Nov 22, 2017

2nd way: I didn't use symmetry

int_-oo^oo x^2/(x^6+9)*dxx2x6+9dx

=1/3*int_-oo^oo (3x^2*dx)/[(x^3)^2+9]133x2dx(x3)2+9

After using y=x^3y=x3 an dy=3x^2*dxdy=3x2dx transformation, this integral became

1/3*int_-oo^oo dy/(y^2+9)13dyy2+9

Now I divided range of integral. First of it from -oo to aa and second of it from aa to oo.

1/3*int_-oo^a dy/(y^2+9)+1/3*int_a^oo dy/(y^2+9)13adyy2+9+13adyy2+9

=1/9*[arctan(y/3)]_-oo^a+1/9*[arctan(y/3)]_a^oo19[arctan(y3)]a+19[arctan(y3)]a

=1/9*[arctan(a/3)-arctan(-oo)]+1/9*[arctan(oo)-arctan(a/3)]19[arctan(a3)arctan()]+19[arctan()arctan(a3)]

=1/9*[arctan(oo)-arctan(-oo)]19[arctan()arctan()]

=1/9*[pi/2-(-pi/2)]19[π2(π2)]

=pi/9π9