Question #0ef02

2 Answers
Nov 21, 2017

See proof below

Explanation:

Let's first translate all these angles to angles between 0 and 360 degrees:

cos 510 * cos 330 + sin 390 * cos 120

cos (510-360) * cos 330 + sin (390-360) * cos 120

cos 150 * cos 330 + sin 30 *cos 120

Now, we can translate all these angles to angles between 0 and 90 degrees. Remember that some will turn negative:

-cos 30 * cos 30 + sin 30 * (-cos 60)

Finally, we can find the exact values:

-sqrt3/2 * sqrt3/2 + 1/2 * (-1/2)

-3/4-1/4

-1

If you need me to explain more (why some values turn negative, etc.), just comment! Hope this helps!

Nov 21, 2017

See the explanation below

Explanation:

cos(510)=cos(510-360)=cos(150)=-cos30=-sqrt3/2

cos(330)=cos(-30)=cos(30)=sqrt3/2

cos(510)*cos(330)=-sqrt3/2*sqrt3/2=-3/4

sin(390)=sin(360+30)=sin30=1/2

cos120=-cos60=-1/2

sin(390)*cos(120)=1/2*-1/2=-1/4

Therefore,

cos(510)*cos(330)+sin(390)*cos(120)=-3/4-1/4=-1

QED