Question #11b8e
2 Answers
See the answer below...
Explanation:
#tan^-1([sqrt{1+x^2}-sqrt{1-x^2}]/ [sqrt{1+x^2}+sqrt{1-x^2}])=x#
#=>([sqrt{1+x^2}-sqrt{1-x^2}]/ [sqrt{1+x^2}+sqrt{1-x^2}])=tanx#
#=>[sqrt{1+x^2}+sqrt{1-x^2}]/ [sqrt{1+x^2}-sqrt{1-x^2}]=1/tanx#
#=>sqrt(1+x^2)/sqrt(1-x^2)=(1+tanx)/(1-tanx)# [ADDITION-DIVISION METHOD]
#=>(1+x^2)/(1-x^2)=(1+tanx)^2/(1-tanx)^2#
#=>1/x^2=((1+tanx)^2+(1-tanx)^2)/((1+tanx)^2-(1-tanx)^2#
#=>1/x^2=(2(tan^2x+1))/(4tanx#
#=>x^2=(2tanx)/(tan^2x+1)#
#=>x^2=2tanxcdot1/sec^2x#
#=>x^2=2 cdot sinx/cosxcdotcos^2x#
#=>x^2=2 cdot sinx cdot cosx#
#=>x=sqrtsin2x# Now what I have to solve...
Explanation:
Hence