Solve this system of equations: 4x-2y=64x2y=6, 3x+y=23x+y=2?

2 Answers
Nov 11, 2017

See below

Explanation:

Assuming second equation is 4x-2y=64x2y=6
Using substitution:

Isolate yy in first equation:
3x+y=23x+y=2
y=2-3xy=23x

Sub y=2-3xy=23x into second equation:
4x-2(2-3x)=64x2(23x)=6
4x-4+6x=64x4+6x=6
10x-4=610x4=6
10x=6+410x=6+4
10x=1010x=10
x=1x=1

Sub x=1x=1 into first equation:
3(1)+y=23(1)+y=2
3+y=23+y=2
y=2-3y=23
y=-1y=1
:.POI=(1, -1)

Alternatively, graph both lines to find the point of intersection.

Here's the graph:

Explanation:

graph{(3x+y-2)(4x-2y-6)=0}