Question #b2c5e

2 Answers
Nov 10, 2017

See the proof below

Explanation:

Let vecu= < a, b,c > in the basis beta=(hati, hatj, hatk)

and vecv= < p,q,r >

It is given that ||vecu|| = ||vecv||

Then

vecu+vecv=< a, b,c > + < p,q,r >

=< a+p,b+q,c+r >

vecu-vecv=< a, b,c > - < p,q,r >

=< a-p, b-q, c-r >

The dot product is

(vecu+vecv).(vecu-vecv)

=< a+p,b+q,c+r > . < a-p, b-q, c-r >

= (a+p)(a-p) +(b+q)(b-q) + (c+r)(c-r)

=a^2-p^2+b^2-q^2+c^2-r^2

=(a^2+b^2+c^2) - (p^2+q^2+r^2)

=||vecu||^2- ||vecv||^2=0

Therefore,

(vecu+vecv) and (vecu-vecv) are orthogonal since their dots products =0

Nov 10, 2017

Consider two vectors vec u and vec v.

Let vec w = vec u + vec v and vec x = vec u - vec v

Now, vecw*vecw = u^2 + v^2 + 2uvcos theta

Similarly,
vecx*vecx = u^2 + v^2 - 2uvCos theta where theta is the angle between vectors vec u and vec v.

It is given that |w| = |x|
implies w^2 = x^2
implies vecw*vecw = vecx*vecx
implies u^2 + v^2 + 2uvcos theta = u^2 + v^2 -2uvcos theta

Thus, we may obtain 4uvcos theta = 0 but for u and v non zero, therefore cos theta = 0 and hence vec u and vec v are orthogonal.