How do you write the recurring decimal 0.\bar(15)0.¯¯¯¯15 as a fraction in its simplest form?

1 Answer
Oct 29, 2017

0.bar (15)=5/330.¯¯¯¯15=533

Explanation:

Let x= 0.bar (15)" "x=0.¯¯¯¯15 then
" "
100 xx x= 100 xx (0.bar (15))100×x=100×(0.¯¯¯¯15)
" "
rArr100 xx x =15.bar (15)100×x=15.¯¯¯¯15
" "
rArr100 xx x=15 + 0.bar (15)100×x=15+0.¯¯¯¯15
" "
rArr100x = 15 + x100x=15+x
" "
rArr 100 x - x = 15100xx=15
" "
rArr 99 x = 1599x=15
" "
rArr x =15/99x=1599
" "
So," "0.bar (15)=15/99 0.¯¯¯¯15=1599
" "
The simplest form of " "0.bar (15) 0.¯¯¯¯15 is:
" "
0.bar (15)=15/99 = (cancel 3 xx 5)/(cancel 3 xx 33) =5/33
" "
Therefore, "0.bar (15)=5/33