Question #444a0

1 Answer
Oct 23, 2017

Yes we can definitely prove that
#tan(x+(3pi)/4)=(tanx-1)/(tanx+1)#

Explanation:

here' how:
we know that,
#tan(alpha+beta)=(tanalpha+tanbeta)/(1-tanalpha.tanbeta#
#rArrtan(x+(3pi)/4)=(tanx+tan((3pi)/4))/(1-tanx.tan((3pi)/4)#
since #tan((3pi)/4)=-1#
#rArr(tanx+(-1))/(1-tanx(-1))rArr(tanx-1)/(tanx+1)#
Hence,proved