Question #faa9f

1 Answer
Oct 5, 2017

#dy/dx=((sec^2(x-y))(3+x^2)^2+(y)(2x))/((3+x^2)+(sec^2(x-y))(3+x^2)^2)#

Explanation:

#tan(x-y)=y/(3+x^2)#

Take the derivative of both sides.

#d/dx(tan(x-y))=d/dx(y/(3+x^2))#

Solve.

#d/dx(tan(x-y))=(1-dy/dx)(sec^2(x-y))#

#d/dx(y/(3+x^2))=((3+x^2)(dy/dx)-(y)(2x))/(3+x^2)^2#

Now we know:

#(1-dy/dx)(sec^2(x-y))=((3+x^2)(dy/dx)-(y)(2x))/(3+x^2)^2#

We can simplify

#(1-dy/dx)(sec^2(x-y))(3+x^2)^2=((3+x^2)(dy/dx)-(y)(2x))#

#((sec^2(x-y))(3+x^2)^2-(dy/dx)(sec^2(x-y))(3+x^2)^2)=((3+x^2)(dy/dx)-(y)(2x))#

#((sec^2(x-y))(3+x^2)^2+(y)(2x))=((3+x^2)(dy/dx)+(dy/dx)(sec^2(x-y))(3+x^2)^2)#

#((sec^2(x-y))(3+x^2)^2+(y)(2x))=(dy/dx)((3+x^2)+(sec^2(x-y))(3+x^2)^2)#

#((sec^2(x-y))(3+x^2)^2+(y)(2x))/((3+x^2)+(sec^2(x-y))(3+x^2)^2)=dy/dx#

Depending on how simplified the answer needs to be, this is technically the solution.