Question #6d4ad

1 Answer
Sep 6, 2017

#d/(dx)[x^(1/x)] = x^(1/x)[[1 - Ln x]/x^2]#

Explanation:

We have #y = (x)^(1/x)#

Taking natural logarithms on both sides,

#Ln y = Ln [(x)^(1/x)]#
#implies Ln y = 1/x Ln x#

Differentiating both sides,

#1/y(dy)/(dx) = -1/x^2 Ln x + 1/x 1/x#

#implies (dy)/(dx) = y [[1 - Ln x]/x^2]#

#implies (dy)/(dx) = x^(1/x)[[1 - Ln x]/x^2]#