Question #e9266

1 Answer
Aug 29, 2017

After using u= cot^(-1)(sqrt(1+x)/sqrt(1-x)) transform,

cotu=sqrt(1+x)/sqrt(1-x)

(cotu)^2=(1+x)/(1-x)

(1-x)*(cotu)^2=1+x

(cotu)^2-x*(cotu)^2=1+x

x*[(cotu)^2+1]=(cotu)^2-1

x*(cscu)^2=(cscu)^2*[(cosu)^2-(sinu)^2]

x=(cosu)^2-(sinu)^2

x=cos2u

Hence,

y=(sin[cot^(-1)(sqrt(1+x)/sqrt(1-x))])^2

=(sinu)^2

=1/2*2(sinu)^2

=1/2*(1-cos2u)

=(1-x)/2

Explanation:

1) I used u=cot^(-1)(sqrt(1+x)/sqrt(1-x)) transform for finding x in terms of u. Finally I found x=cos2u.

2) I rewrote (sinu)^2 in terms of cos2u. Finally I found (sin[cot^(-1)(sqrt(1+x)/sqrt(1-x))])^2 as (1-x)/2.