How do you evaluate #lim_(x-> 0) tanx/x#?
2 Answers
Since
#L = lim_(x->0) (sec^2x)/1#
#L = lim_(x->0) sec^2x#
#L = sec^2(0)#
#L = 1/cos^2(0)#
#L = 1#
If we check the graph of the function
Hopefully this helps!
Aug 25, 2017
Please see below.
Explanation:
So,
# = lim_(xrarro) sinx/x * lim_(xrarro)1/cosx#
# = 1*1/1 = 1#