Question #80447

1 Answer
Aug 24, 2017

( - e^(lnx) x^3 e^(1-x) )^2 = x^8 e^(2-2x)(elnxx3e1x)2=x8e22x

Explanation:

( - e^(lnx) x^3 e^(1-x) )^2(elnxx3e1x)2

First simplify what is inside the parentheses, note that e^lnx=xelnx=x

= ( -x*x^3*e^(1-x) )^2=(xx3e1x)2

= ( -x^4e^(1-x) )^2=(x4e1x)2

Distribute the exponent among what is inside the base of the exponent:
= (-1)^2 * (x^4)^2 * (e^(1-x))^2=(1)2(x4)2(e1x)2

Simplify:

= x^8 e^(2-2x)=x8e22x