Question #28e21
↳Redirected from
"Can you write a balanced nuclear equation for the alpha decay of Ra-226?"
#sinx=(4+cosx)/8 or sinx= 1/2+cosx/8#
#8sinx=4+cosx#
#=>#Dividing by #8# in both sides.
#=>(8sinx)/8=(4+cosx)/8#
#=>(cancelcolor(red)(8)sinx)/cancelcolor(red)(8)=(4+cosx)/8#
#=>sinx=(4+cosx)/8 or# On simplifying
#=>sinx=4/8+cosx/8#
#=>sinx=(1*4)/(2*4)+cosx/8#
#=>sinx=(1*cancelcolor(red)(4))/(2*cancelcolor(red)(4))+cosx/8#
#=>sinx=1/2+cosx/8#
So answer = #sinx=(4+cosx)/8 or sinx= 1/2+cosx/8#
#8sinx=4+cosx#
#=>(8sinx-4)^2=cos^2x#
#=>64sin^2x-64sinx+16=1-sin^2x#
#=>65sin^2x-64sinx+15=0#
#=>65sin^2x-39sinx-25sinx+15=0#
#=>13sinx(5sinx-3)-5(5sinx-3)=0#
#=>(5sinx-3)(13sinx-5)=0#
So #sinx =3/5 and sin x= 5/13#
When #sinx =3/5# then #cosx =pmsqrt(1-sin^2x)=pm4/5#
#sinx=3/5 and cosx=4/5# when #x
in " 1st quadrant "
If we put these two values in the given equation we get
#LHS=8sinx=8xx3/4=24/5#
and
#RHS=4+cosx=4+4/5=24/5#
Here #LHS=RHS#
So we can say that #sinx =3/5# satisfies the given equation and this value is an acceptable solution when angle x is in 1st quadrant,
If x is in 2nd quadrant the #sinx =3/5 # but #cosx= -4/5#, these values do not satisfy the given equation
Again
When #sinx =5/13# then #cosx =pmsqrt(1-sin^2x)=pm12/13#
#sinx =5/13 and cosx =12/13# when #x in " 1st quadrant"#
If we put these two values in the given equation we get
#LHS=8sinx=8xx5/13=40/13#
and
#RHS=4+cosx=4+12/13=64/13#
Here #LHS!=RHS#
But if x is in 2nd quadrant the #sinx =5/13 # but #cosx= -12/13#, these values do satisfy the given equation
Hence solution #color(red)(tosinx =3/5" when x is in 1st qudrant") #
and #color(red)(tosinx =5/13" when x is in 2nd quadrant") #
Given that, #8sinx=4+cosx.#
#:. 8sinx-4=cosx.#
#:. (8sinx-4)^2=cos^2x=1-sin^2x.#
#:. 64sin^2x-64sinx+16+sin^2x-1=0, i.e., #
# 65sin^2x-64sinx+15=0.#
Applying the Quadr. Formula, we get,
#sinx={64+-sqrt(64^2-4*65*15)}/(2*65),#
#=(64+-sqrt(4096-3900))/130=(64+-sqrt196)/130=(64+-14)/130.#
#rArr sinx=78/130, or, 50/130.#
# :. sinx=3/5, or, 5/13.#