Integration by Substitution?

Show that:
π20sin2(x)dx=π20cos2(x)dx

3 Answers
Jul 25, 2017

π20cos2(x)dx=π20sin2(x)dx

π20cos2(x)dxπ20sin2(x)dx=0

using the linearity of the integral:

π20(cos2(x)dxsin2(x))dx=0

and the trigonometric identity: cos(2α)=cos2αsin2α

π20cos(2x)dx=0

In fact:

π20cos(2x)dx=12[sin(2x)]π20=0

which proves the point.

Jul 25, 2017

π20sin2xdx=π20cos2xdx

π20cos2xdxπ20sin2xdx=0

π20(cos2xsin2x)dx=0

π20cos2xdx=0

Let's substitude u=2xdu=2dxdx=du2 :

π0cosudu2=0

12[sinu]π0=0(sinπsin0)=0

0=0 which is true, so the first statement is true.

Jul 25, 2017

Kindly, refer to the Explanation.

Explanation:

Using the well-known Result : a0f(x)dx=a0f(ax)dx,

we have, π20sin2xdx=π20sin2(π2x)dx,

=π20cos2xdx.

Hence, the Proof.