If u(x) = -2x^2+3 and v(x) = 1/xu(x)=2x2+3andv(x)=1x, what is the range of (u * v)(x)(uv)(x)?

1 Answer
Jul 23, 2017

u@v (x) = u(v(x)) = u(1/x) = (3x^2-2)/x^2uv(x)=u(v(x))=u(1x)=3x22x2

"Range: " (-oo,3)Range: (,3)

Explanation:

u(x) = -2x^2+3u(x)=2x2+3

v(x) = 1/xv(x)=1x

Whichever notation you prefer:
(u@v) (x) = u(v(x))(uv)(x)=u(v(x))

u@v (x) = u(v(x)) = u(1/x)uv(x)=u(v(x))=u(1x)

u(1/x) = (-2)/x^2 + 3u(1x)=2x2+3

u(1/x) = frac{3x^2-2}{x^2}u(1x)=3x22x2

The horizontal asymptote of this function is at y=3y=3. So, the range of this function is from (-oo,3)(,3)