How do you write a rule for the nth term of the arithmetic sequence given a_20=240, a_15=170a20=240,a15=170?

2 Answers
Jul 20, 2017

n^(th)nth term a_n=14n-40an=14n40

Explanation:

n^(th)nth term a_nan of an arithmetic sequence, whose first term is a_1a1 and common difference is dd is given by

a_n=a_1+(n-1)dan=a1+(n1)d

Hence a_20=a_1+19d=240a20=a1+19d=240 ..........(A)

and a_15=a_1+14d=170a15=a1+14d=170 ..........(B)

Subtracting (B) from (A), 5d=705d=70 i.e. d=70/5=14d=705=14

and hence putting this in (B), we get

a_1+14xx14=170a1+14×14=170

or a_1=170-14xx14=170-196=-26a1=17014×14=170196=26

Hence a_n=-26+(n-1)xx14an=26+(n1)×14

=-26+14n-14=14n-40=26+14n14=14n40

Jul 20, 2017

a_"n"=-26+14(n-1)an=26+14(n1)

Explanation:

ω=(a_20-a_15)/5=(240-170)/5=70/5=14

a_1=a_15-14ω=170-196=-26

So for the n^{th} term we know :

a_"n"=a_1+(n-1)ω=-26+14(n-1)

To check out answer let's calculate a_20

a_20=-26+14*19=-26+266=240

Which is true.