Question #52d88

2 Answers
Jul 19, 2017

x=0 or x=pi/2 or x=pi

Explanation:

We know that :

sina+sinb=2sin((a+b)/2)cos((a-b)/2)

so

sin3x+sinx=0 iff 2sin((3x+x)/2)cos((3x-x)/2)=0 iff

2sin2xcosx=0iff sin2xcosx=0 iff

sin2x=0 or cosx=0

Let's start with sin2x=0

sin2x=0 iff 2x=2kpi or 2x=2kpi+piiff 2x=kpi iff

x=(kpi)/2, kin ZZ

because x in[0,pi], k can be 0 or 1 or 2

so x can be 0 or pi/2 or pi

Let's start with cosx=0 now :

cosx=0 iff cosx=cos(pi/2) iff x=2kpi+-pi/2 the only accepted solution from here is x=pi/2

Now we gather all of our solutions so we have :

x=0 or x=pi/2 or x=pi

Jul 19, 2017

See below.

Explanation:

A different approach.

Using de Moivre's identity

sin x=(e^(ix)-e^(-ix))/(2i) we have

(e^(3ix)-e^(-3ix))/(2i)+(e^(ix)-e^(-ix))/(2i)=0

and now using a^3-b^3=(a-b)(a^2+ab+b^2) we have

(e^(ix)-e^(-ix))(e^(2ix)+1+e^(-2ix))+(e^(ix)-e^(-ix))=0 or

(e^(ix)-e^(-ix))(e^(2ix)+2+e^(-2ix))=0

then

{(e^(ix)-e^(-ix)=0),(e^(2ix)+2+e^(-2ix)=0):}

and from

e^(ix)-e^(-ix)=0->e^(-ix)(e^(2ix)-1)=0->2x=0+2kpi->x = kpi because e^(-ix) ne 0

and from

e^(2ix)+2+e^(-2ix)=0 calling y = e^(2ix) we have

1/y(y+1)(y+1)=0->y = e^(2ix)=-1 because e^(-2ix) ne 0

so

e^(2ix)=-1->2x=pi+2kpi->x = pi/2+kpi

Resuming, the solutions are:

x=(kpi)uu(pi/2+kpi),k=0,pm1,pm2,cdots

and in the interval [0,pi] we have the set

x = {0,pi/2,pi}