The first principle defines the derivative of a function ff as such:
f'=lim_(h->0)(f(x+h)-f(x))/(h)
We let f=1/sqrt(x+5)
Then
f'=lim_(h->0)(1/sqrt(x+h+5)-1/sqrt(x+5))/(h)
=lim_(h->0)1/h*(1/sqrt(x+h+5)-1/sqrt(x+5))
=lim_(h->0)1/h*((sqrt(x+5)-sqrt(x+h+5))/sqrt((x+h+5)(x+5)))
=lim_(h->0)1/(hsqrt((x+h+5)(x+5)))* (sqrt(x+5)-sqrt(x+h+5))*((sqrt(x+5)+sqrt(x+h+5))/(sqrt(x+5)+sqrt(x+h+5)))
=lim_(h->0)1/(hsqrt((x+h+5)(x+5)))* ((sqrt(x+5))^2-(sqrt(x+h+5))^2)/(sqrt(x+5)+sqrt(x+h+5))
=lim_(h->0)1/(hsqrt((x+h+5)(x+5)))* (x+5-x-h-5)/(sqrt(x+5)+sqrt(x+h+5))
=lim_(h->0)1/(hsqrt((x+h+5)(x+5)))* (-h)/(sqrt(x+5)+sqrt(x+h+5))
=lim_(h->0)1/sqrt((x+h+5)(x+5))* (-1)/(sqrt(x+5)+sqrt(x+h+5))
=1/sqrt((x+0+5)(x+5))* (-1)/(sqrt(x+5)+sqrt(x+0+5))
=1/sqrt((x+5)^2)* (-1)/(2sqrt(x+5))
=1/(x+5)* (-1)/(2sqrt(x+5))
=-1/(2(x+5)^(3/2))