If f(x) = (2x+5)/xf(x)=2x+5x, what is f^-1(x)f1(x)?

1 Answer
Jun 27, 2017

f^-1(x)=\frac{5}{x-2}f1(x)=5x2

Explanation:

f(x)=(2x+5)/xf(x)=2x+5x
x=f^-1((2x+5)/x)x=f1(2x+5x)

Let y=(2x+5)/xy=2x+5x
Now solve y=(2x+5)/xy=2x+5x for yy
yx=2x+5yx=2x+5
yx-2x=5yx2x=5
x(y-2)=5x(y2)=5
x=5/(y-2)x=5y2

So,
x=f^-1((2x+5)/x)x=f1(2x+5x)
5/(y-2)=f^-1(y)5y2=f1(y)
And
,f^-1(x)=\frac{5}{x-2}f1(x)=5x2