How do you divide \frac { 4x ^ { 8} y ^ { 5} } { ( 2x y ) ^ { 3} } \div \frac { ( x ^ { 8} y ^ { 5} ) ^ { 3} } { ( 2x y ^ { 8} ) ^ { 4} }4x8y5(2xy)3÷(x8y5)3(2xy8)4?

1 Answer
Jun 22, 2017

Here is the answer:((8y^19)/(x^15))(8y19x15)

Explanation:

First of all, expand the exponents:((4x^8y^5)/(8x^3y^3))/((x^24y^15)/(16x^4y^32))4x8y58x3y3x24y1516x4y32

Next, switch the sign and find the reciprocal of the fraction:((4x^8y^5)/(8x^3y^3))*((16x^4y^32)/(x^24y^15))(4x8y58x3y3)(16x4y32x24y15)

Multiply:((64x^12y^37)/(8x^27y^18))(64x12y378x27y18)

Cancel terms to get the final answer:((8y^19)/(x^15))(8y19x15)

Hope this helps!