How do you solve \sqrt { 5x + 56} - 6= 3x - 125x+566=3x12?

1 Answer
Jun 20, 2017

x=-4/9, 5x=49,5

Explanation:

sqrt(5x+56)−6=3x−125x+566=3x12

The first step is to isolate the radicand.

sqrt(5x+56)=3x-65x+56=3x6

Next, square both sides of the equation to cancel out the radical.

sqrt((5x+56)^2)=(3x-6)^2(5x+56)2=(3x6)2
5x+56=9x^2 -36x +365x+56=9x236x+36

Move all the terms to one side so it can be factored.

0=9x^2-41x-200=9x241x20

Foil the side with all the terms.

0=(9x+4)(x-5)0=(9x+4)(x5)

Set each factor equal to 0.

0=9x+40=9x+4
0=x-50=x5

Solve each equation for x.

x=-4/9, 5x=49,5

Now you have your answer! :)